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Abstract

We provide local expressions for Chern–Weil type forms built from superconnections associated with families of Dirac operators
previously investigated in [S. Scott, Zeta–Chern forms and the local family index theorem, Trans. Amer. Math. Soc. (in press).
arXiv: math.DG/0406294] and later in [S. Paycha, S. Scott, Chern–Weil forms associated with superconnections, in: B. Booss-
Bavnbeck, S. Klimek, M. Lesch, W. Zhang (Eds.), Analysis, Geometry and Topology of Elliptic Operators, World Scientific, 2006].

When the underlying fibration of manifolds is trivial, the even degree forms can be interpreted as renormalised Chern–Weil
forms in as far as they coincide with regularised Chern–Weil forms up to residue correction terms. Similarly, a new formula for
the curvature of the local fermionic vacuum line bundles is derived using a residue correction term added to the naive curvature
formula.

We interpret the odd degree Chern–Weil type forms built from superconnections as Wodzicki residues and establish a
transgression formula along the lines of known transgression formulae for η-forms.
c© 2007 Elsevier B.V. All rights reserved.
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0. Introduction

The Chern–Weil formalism in finite dimensions assigns to a connection ∇ on a principal bundle P → B over a
manifold B a form f (∇) on B with values in the adjoint bundle Ad P:

f : C(P) → Ω(B, Ad P)

∇ 7→ f (∇),
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which is closed with de Rham cohomology class independent of the choice of connection. Here C(P) is the space of
connections on P and Ω(B, W ) the space of differential forms with values in a vector bundle W over B.

In the context of Ψdo-bundles – i.e. bundles with structure group the group of zero-order invertible
pseudodifferential operators C`∗

0 – the trace used in finite dimensions to build maps f j (∇) = tr(∇2 j ) can be replaced
by two1 natural traces on the algebra C`0 of zero-order pseudodifferential operators, namely the Wodzicki residue
and the leading symbol trace. Such constructions were investigated in [17] and lead to maps which project down to
quotient connections ∇̄ on the quotient bundle P̄ with structure group C`∗

0/(1 + C`−∞)∗ where C`−∞ is the algebra
of smoothing operators and (1 + C`−∞)∗ the group of invertibles. In other words, they project down to maps:

f̄ : C(P̄) → Ω(B, Ad P̄)

∇ 7→ f̄ (∇̄).

We call such maps local in as far as they are insensitive “to smoothing perturbations”.
In contrast, on a principal bundle with structure group (1+C`−∞)∗ ⊂ C`∗

0 one can mimic the ordinary Chern–Weil
construction to build Chern classes using the ordinary trace on C`−∞. We are concerned in this paper with possible
extensions of these Chern forms to Ψdo-bundles. Since the ordinary trace on C`−∞ extends to linear functionals
on C`0 obtained from regularised (or weighted) traces, one might want to try to extend the ordinary Chern–Weil
constructions to Ψdo-bundles using these regularised traces. Such issues were addressed in [17]; the fact that
regularised traces do not yield genuine traces gives rise to obstructions to carrying out the Chern–Weil construction
since the regularised Chern forms obtained from regularised traces are not closed. However, it is useful to keep in
mind that the obstruction to their closedness can be expressed in terms of local maps in the above sense.

In this paper, we discuss ways to “renormalise” the regularised Chern forms by adding to them local terms in order
to turn them into closed forms with de Rham classes independent of the connection. To do so, we compare them with
Chern forms previously investigated in [22] and later [19], which are built from superconnections; in some cases they
differ by local expressions so that a renormalisation procedure can indeed be carried out adding local counterterms.
More precisely, letting (say in the Z2-graded case) A = D + ∇ be a superconnection associated with a Dirac operator
D, then the expression

trD2
(∇2 j ) − trA

2
(A2 j )[2 j]

(which compares the naive infinite dimensional analogue trD2
(∇2 j ) of the finite dimensional Chern form tr(∇2 j )

and the closed form trA
2
(A2 j )[2 j] built from the super connection) is local in the above sense. Here trD2

(B) :=

fpz=0TR(B(D2
+ πD)−z) is the D2-weighted (or ζ -regularised) trace of B obtained as the finite part at z = 0 of

the meromorphic expansion TR(B(D2
+ πD)−z) where B is a form valued pseudodifferential operator and TR the

canonical trace on non-integer order pseudodifferential operators [10]. πD stands for the orthogonal projection onto
the kernel of D.

This “renormalisation” procedure applies to the geometric set-up corresponding to families of Dirac operators
associated with a trivial fibration of manifolds (see Theorem 1).

In the case of a family of Dirac operators associated with a general fibration of manifolds, such a straightforward
“renormalisation procedure” is not possible due to the presence of an extra curvature term arising from a horizontal
distribution on the fibration. Indeed, the Chern–Weil forms associated with a superconnection then differ from a
weighted Chern form by (a priori) non-local terms involving this extra curvature term.

For a family of Dirac operators associated with a general fibration of spin manifolds π : M → B, on the grounds
of the family index theorem, we identify Chern forms associated with the superconnection with form components
of
∫
M/B Â(M/B) ∧ ch(EM/B) where E → M is a vector bundle over M. The j-th Chern form associated with a

superconnection A introduced in [19] (following ideas of [22]) has 2 j-form part (see Theorem 2)

strA
2
(A2 j )[2 j] =

(−1) j j !

(2iπ)
n
2

(∫
M/B

Â(M/B) ∧ ch(EM/B)

)
[2 j]

.

On the grounds of the previous discussion, when the fibration is trivial, it differs from renormalised weighted Chern
forms by local terms. As could be expected in analogy with the finite dimensional situation, in the graded case, the

1 The only two up to linear combinations [11].
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first Chern form strA
2
(A2)[2] turns out to be proportional to the curvature of the determinant bundle associated with

the family of Dirac operators from which the superconnection is built.
But there is also a j-th residue Chern form associated with a superconnection A (which is new to our knowledge),

the 2 j − 1-th-form part of which reads (see Theorem 2)

sres(|A|
2 j−1)[2 j−1] =

√
π

(−1) j (2 j − 1)!!

(2iπ)
n+1

2 2 j−1

(∫
M/B

Â(M/B) ∧ ch(EM/B)

)
[2 j−1]

.

In the non-graded case, the second residue Chern form (i.e. for j = 2) turns out to be proportional to the curvature
of the gerbe associated with the family of Dirac operators from which the superconnection is built, which was
investigated by Lott [12].

Following a similar scheme to that of Lott2 we derive a transgression formula for the j-th residue Chern form (see
Theorem 3)

sres(|Aλ|
2 j−1)[2 j−1] = a j · d(η̃λ)[2 j−2],

using the η-invariant η̃λ (see [2,12]) associated with a family of invertible Dirac type operators D(λ) = D−λI . These
perturbed operators differ from that of Lott but meet physicists’ needs.

The relation to gauge anomalies is explained in the last section of the paper. In particular, a new formula for the
curvature of the local fermionic vacuum line bundles (see Theorem 5) is derived using a residue correction term added
to the naive curvature formula (see Theorem 4), the latter coming by analogy from the geometry of finite dimensional
Grassmann manifolds, replacing the finite dimensional trace by a weighted trace.

1. The geometric set-up

Let π : E → M be a vector bundle over a closed manifold M . C`0(M, E) denotes the Fréchet Lie algebra of
zero-order classical pseudodifferential operators (Ψdo-s) acting on smooth sections of E and C`∗

0(M, E) the Fréchet
Lie group of invertible zero-order classical pseudodifferential operators.

Let P → B be a G = C`∗

0(M, E) principal bundle and Ad P = P ×G C`0(M, E) the adjoint bundle, so that
locally, Ad P|U ' U × C`0(M, E). We equip P with a connection 1-form Θ : T P → C`0(M, E) which induces
a connection ∇

Ad on Ad P . In local coordinates we have ∇
Ad

= d + [Θ, ·] with Θ the above C`0(M, E) valued
1-form.

The dual bundle Ad P? of Ad P comes equipped with the dual connection (∇Ad )? defined for any section λ of
AdP? and any section σ of Ad P by

dλ(σ) = ((∇Ad )?λ)(σ ) + λ(∇Ad σ).

On the other hand, G acts on the space C∞(M, E) of smooth sections of E and the associated vector bundle
E = P ×G C∞(M, E) comes equipped with the connection ∇, locally of the form ∇ = d + Θ . Then, locally
∇

Ad
= d + [Θ, ·] and (∇Ad )∗ = d − [Θ, ·]. It is therefore convenient to write ∇

Ad σ = [∇, σ ] for any section σ of
Ad P and (∇Ad )∗λ = [∇, λ] for any section λ of Ad P?. With this notation we have

d(λ(σ )) = [∇, λ](σ ) + λ([∇, σ ]).

The group (1 + C`−∞(M, E))∗, where C`−∞(M, E) denotes the algebra of smoothing operators, is a normal
subgroup of C`∗

0(M, E). Quotienting C`∗

0(M, E) by (1 + C`−∞(M, E))∗ yields quotient bundles P̄ → B and
Ē = P̄ ×Ḡ C∞(M, E) with structure group

Ḡ := C`∗

0(M, E)/(1 + C`−∞(M, E))∗

equipped with the induced connection ∇̄.
Let C(P) and C(P̄) denote the space of connections on P and P̄ .

2 We derive a complete proof clarifying some steps in Lott’s proof. Our proof is carried out for operators D(λ) = D − λI (which are differential
operators) but it easily extends to operators Dα = D + hα(D) (which are pseudodifferential operators) used by Lott where hα is a smooth function
with compact support.
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Definition 1. We call a map

f : C(P) → Ω(B, C`(P))

∇ 7→ f (∇)

local whenever it projects down to

f̄ : C(P̄) → Ω(B, C`(P̄))

∇ 7→ f̄ (∇̄).

Let C`(E) = P ×G C`(M, E) denote the bundle of classical pseudodifferential operators with fibre the whole
algebra C`(M, E) of classical pseudodifferential operators acting on sections of E . Clearly, Ad P ⊂ C`(E) is a
subbundle of C`(E).

In view of the following constructions, it is useful to mention that when M = {∗} is a point, then E = V is a
vector space, C`(M, E) = C`0(M, E) = End(V ), C`∗(M, E) = C`∗

0(M, E) = GL(V ) so that P → B boils
down to an ordinary GL(V ) principal bundle and both C`(E) → B and Ad P → B boil down to its adjoint bundle
Ad P = P ×G End(V ) for the adjoint action of GL(V ) on End(V ). Thus, Ψdo-bundles can be seen as natural
generalisations of ordinary principal bundles.

2. Q-weighted traces (a short review)

A first attempt to generalise to Ψdo-bundles the construction of Chern–Weil forms on ordinary bundles, is to use
regularised (or weighted) traces of powers of the curvature as an ersatz form for ordinary traces of powers of the
curvature which provide representatives of Chern–Weil classes in finite dimensions [17]. We give a brief review of
weighted traces of classical pseudodifferential operators.

Let Q ∈ C`(M, E) be an invertible admissible elliptic operator of positive order q, where by admissible we mean
that its leading symbol admits a spectral cut θ .3 If Q is not invertible, we replace it by Q + πQ where πQ is the
orthogonal projection onto the kernel of Q.

An invertible admissible elliptic operator Q has complex powers

Qz
θ =

1
2iπ

∫
Γθ

λz(Q − λ)−1dλ

where Γθ is a contour around the spectral cut and hence its logarithm logθ Q =
d
dz Qz

|z=0 which is not classical any
longer. In applications to follow, Q is non-negative self-adjoint so that θ = π can be chosen as a spectral cut. We
shall henceforth drop out the explicit mention of the spectral cut writing simply Q−z and log Q. Recall that for any
A ∈ C`(M, E) and provided Q has positive order, the map z 7→ TR(AQ−z) is meromorphic with simple pole at 0
and its finite part at 0

trQ(A) := fpz→0TR(AQ−z)

is called the Q-weighted (or ζ -regularised) trace of A. Here TR is the canonical trace on non-integer order classical
Ψdo-s [10]. Even though it is not cyclic and hence not a genuine trace, the Q-weighted trace deserves the name of a
trace in as far as it coincides with the ordinary trace on trace-class operators and hence on C`−∞(M, E) and therefore
extends it to a linear map on C`(M, E).

In contrast, the Wodzicki residue defined for A ∈ C`(M, E) by [23]

res(A) =
1

(2π)n

∫
S∗ M

trx (σA(x, ξ))−ndxdSξ

3 An operator Q ∈ C`(M, E) of positive order is called admissible if there is a proper subsector of C with vertex 0 which contains the spectrum
of the leading symbol σL (Q) of Q. Then there is a half-line Lθ = {reiθ , r > 0} (a spectral cut) with vertex 0 and determined by an Agmon angle
θ which does not intersect the spectrum of Q. If Q is invertible, then L̄θ = {reiθ , r ≥ 0} does not intersect the spectrum of Q.
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vanishes on trace-class operators and hence on C`−∞(M, E). Here S∗M stands for the cotangent unit sphere, dSξ the
canonical volume measure on SM , σA is the symbol of A, trx the fibrewise trace and the subscript −n stands for the
−n (positively) homogeneous part of the symbol.

When A is a differential operator we have [20]:

trQ(A) = −
1
q

res(A log Q) (1)

where the residue on the r.h.s. is defined by the above formula in spite of A log Q not being classical any longer. The
fact that A is differential ensures that the residue is well defined.

In general trQ(A) depends on Q for a given A ∈ C`(M, E); given two weights Q1, Q2 ∈ C`(M, E) with positive
orders q1, q2 and same spectral cut we have

trQ1(A) − trQ2(A) = −res
(

A
(

log Q1

q1
−

log Q2

q2

))
. (2)

Also, trQ is not cyclic: the obstruction to the cyclicity of trQ is measured by a Wodzicki residue:

trQ([A, B]) = −
1
q

res(A[B, log Q]), (3)

where now the residue is applied to a genuine classical operator since the bracket [B, log Q] is classical.
We shall need the following technical lemma (see [4] Lemma 9.35).

Lemma 1. Let f be a smooth function on ]0, +∞[ with asymptotic behaviour at 0 of the type

f (ε) ∼ε→0

∞∑
j=0

a jε
α− j

for some real number α (depending on f ) and such that for large enough ε,

| f (ε)| ≤ Ce−ελ

for some λ > 0, C > 0. Then its Mellin transform

z 7→ M( f )(z) :=
1

Γ (z)

∫
∞

0
εz−1 f (ε)dt

defines a meromorphic map on the complex plane (which turns out to be holomorphic at z = 0) and

fpε=0 f (ε) = fpz=0M( f )(z) = M( f )(0).

In particular, if f (ε) =
√

εg(ε) then

fpε=0 f (ε) =
√

π resz=0

(
M(g)

(
z +

1
2

))
.

Proof. The first part of the lemma is well known (see e.g. [4] Lemma 9.35). Let us check the formula relating finite
parts of f (ε) =

√
εg(ε) and its Mellin transform.

fpε=0 f (ε) = fpz=0M( f )(z)

= fpz=0
1

Γ (z)

∫
∞

0

√
εεz−1g(ε)dε

= fpz=0
1

Γ (z)

∫
∞

0
εz+ 1

2 −1g(ε)dε

= fpz=0

Γ
(

z +
1
2

)
Γ (z)

M(g)

(
z +

1
2

)
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= Γ
(

1
2

)
fpz=0

(
zM(g)

(
z +

1
2

))
=

√
π resz=0

(
M(g)

(
z +

1
2

))
. �

The Mellin transform provides a stepping stone between heat-kernel regularisation and ζ -regularisation methods:

Proposition 1. For any Q ∈ C`(M, E) non-negative self-adjoint elliptic and any A ∈ C`(M, E) with vanishing
Wodzicki residue:

trQ(A) = fpε=0tr(Ae−εQ).

Proof. This follows from Lemma 1 applied to f (ε) = tr(Ae−εQ). �

3. Q-weighted Chern forms

We define weighted Chern–Weil forms as in [17] and briefly recall the obstructions to the closedness.
Weighted traces extend to Ψdo-valued forms in the following manner. Given a Ψdo-vector bundle E , Q is a

section of C`(E) which is elliptic, admissible and has positive constant order q. Note that these properties, ellipticity,
admissibility and constant order q , are invariant under the adjoint action of the group C`∗(M, E) of invertible classical
pseudodifferential operators. The definition of the Q-weighted trace and the Wodzicki residue then extend to Ψdo-
valued forms setting for b ∈ U ⊂ B and α ⊗ A ∈ Ω(U, C`(E)), with α ∈ Ω(U ), A ∈ C∞(U, C`(E)):

trQ(α ⊗ A)(b) := α(b) ⊗ trQb (A(b)); res(α ⊗ A)(b) := α(b) ⊗ res(A(b)).

Properties (1)–(3) extend in a straightforward manner to forms

trQ(α) = −
1
q

res(α log Q)

trQ1(α) − trQ2(α) = −res
(

α

(
log Q1

q1
−

log Q2

q2

))
trQ([α, β]) = −

1
q

res(α[β, log Q]),

(4)

where the first identity holds whenever α is a differential operator valued form whereas the others hold for any C`(E)

valued forms α, β.
The Wodzicki residue commutes with differentiation [∇, res] = 0 whereas weighted traces do not. The obstruction

is measured in terms of a Wodzicki residue. Indeed, it follows from (4) that locally, [dtrQ
](α) = −

1
q res(αd log Q) as

a result of which, writing ∇
Ad

= d + [θ, ·] in local coordinates, we have

[∇, trQ
](α) = d(trQ(α)) − trQ([∇, α])

= d(trQ(α)) − trQ(dα) − trQ([θ, α])

= [dtrQ
](α) −

1
q

res(α[θ, log Q])

= −
1
q

res(αd log Q) −
1
q

res(α[θ, log Q])

= −
1
q

res(α[∇, log Q]) ∀α ∈ Ω(B, C`(E)). (5)

The curvature Ω = (∇Ad )2 of ∇
Ad lies in Ω2(P, C`(E)) so that the Q-weighted trace trQ(Ω i ) defines a 2i-

form on B. The following proposition tells us that the obstruction to the closedness is local in the sense of the above
definition.
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Proposition 2. The exterior differential of the weighted Chern–Weil form trQ(Ω i ) is local, i.e. of the form dtrQ(Ω i ) =

fi (∇̄) for some f̄i : C(P̄) → Ω(C`(P̄)).

Proof. Since ∇
Ad (Ω) = [∇,Ω i

] = 0, by (5) we have

dtrQ(Ω i ) = [∇, trQ
](Ω i ) + trQ([∇,Ω i

])

= [∇, trQ
](Ω i ) +

i∑
j=1

trQ(Ω j
[∇,Ω ]Ω i− j )

= [∇, trQ
](Ω i )

= −
1
q

res(Ω i
[∇, log Q]).

Since the Wodzicki residue vanishes on smoothing operators,

dtrQ(Ω i ) = dtrQ(Ω̄ i ) = f̄ (∇̄),

and hence the locality property of the obstruction to the closedness. �

4. From superconnections to Chern–Weil type forms

We review and extend constructions of Chern–Weil type forms carried out in [19] using superconnections. Let E
be a vector bundle associated with a Ψdo-principal bundle P as before.

4.1. Chern forms associated with superconnections

• The Z2-graded case: Let us assume that E = E+
⊕ E− is a Z2-graded super bundle on B. The canonical trace TR

for non-integer order operators in C`(E) is replaced by the supercanonical trace sTR whereas weighted traces trQ

for operators in C`(E) are replaced by weighted supertraces strQ with respect to even weights Q = Q+
⊕ Q−.

They vanish on odd Ψdos- and give the difference of weighted traces on even Ψdos-:

sTR(A) := TR(A++) − TR(A−−); strQ(A) := trQ+

(A++) − trQ−

(A−−)

with obvious notation.
This grading combined with the Z2-grading on forms Ω(B, E) = Ω ev(B, E) ⊕ Ωod(B, E) gives rise to

Ω+(B, E) = Ω ev(B, E+) ⊕ Ωod(B, E−); Ω−(B, E) = Ωod(B, E+) ⊕ Ω ev(B, E−).

Definition 2 ([4]). A superconnection is an odd parity first-order differential operator

A : Ω
+
−(B, E) → Ω

−
+(B, E)

which satisfies the (graded) Leibniz rule. If α ∈ Ω(U ) for some open subset U ⊂ B and B ∈ C∞(U, C`(E)) then

A(α ⊗ B) = dα ⊗ B + (−1)|α|α ⊗ AB.

The curvature A2 of a superconnection A on E lies in Ω(B, C`(E)). Following Quillen [21] we say a
superconnection A on E is associated with a smooth family of elliptic differential operators {Db, b ∈ B} whenever
A[0] = D.

Example 1. A = D + ∇ defines a particular superconnection associated with D with curvature

A2
= D2

+ ∇
Ad D + Ω = Q + [∇, D] + Ω

where we have set Q = D2. Here [∇, D] = ∇D + D∇ is the anticommutator.

Remark 1. In the following we systematically use graded commutators of operator valued forms: the
anticommutator for odd–odd forms and the usual commutator otherwise.
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• The non-graded case: Let us assume that E is an ordinary vector bundle on B. Following Quillen, we introduce an
extra grading σ such that σ 2

= 1 and build the right C ⊕ Cσ -module:

C`σ (E) := C`(E)
⊗

(C ⊕ Cσ).

Odd degree Ψdos-lie in C`(E)
⊗

(Cσ) whereas C`(E) is identified with even degree Ψdos. The ordinary canonical
trace TR extends to non-integer order operators in C`σ (E) by sTR(α + σβ) = TR(β) so that weighted traces trQ

are replaced by

strQ(α + σβ) := trQ(β).

These definitions extend to the space Ωσ (B, E) of C`σ (E) valued forms on B in a straightforward manner.

Definition 3 ([4]). A superconnection is a first-order differential operator

A : Ωσ (B, E) → Ωσ (B, E)

which commutes with σ and satisfies the (graded) Leibniz rule.

As in the even case, it is associated with a family {Db, b ∈ B} of elliptic differential operators whenever
A[0] = D.

Example 2. A := σ D + ∇ is a particular superconnection associated with D, the curvature of which reads4

A2
= D2

+ ∇
Ad (σ D) + Ω = Q + [∇, σ D] + Ω

with Q = (σ D)2
= D2 as before.

Let us recall from [22] (see also [19]) that weighted traces can be extended to include weights A2 which are
Ψdo-valued forms and analogues of Chern forms can be constructed, which turn out to be closed. Writing

A2
= A2

[0]
+ A2

[1]
+ A2

[2]
= D2

+ A2
[>0]

where the subscript [ j] stands for the j-th degree part, and [> 0] for non-zero-degree part, can be useful for deriving
explicit expansions in increasing form degree. For example,

(λ − A2)−1
= (λ − D2

− A2
[>0]

)−1

=

K∑
j=0

(λ − D2)−1A2
[>0]

(λ − D2)−1
· · · A2

[>0]
(λ − D2)−1

+ SK (D2, A2
[>0]

, λ), (6)

where SK has form degree >K and where A2
[>0]

(λ − D2)−1 arises j times in the j-th term of the sum. By convention
the j = 0 term reduces to (λ − D2)−1. Hence, for any positive integer K

((λ − A2)−1)[K ] =

K∑
j=0

(λ − D2)−1A2
[>0]

(λ − D2)−1
· · · A2

[>0]
(λ − D2)−1

has a finite expansion in increasing form degree. Also, whenever A[0] = D is invertible, A2 is invertible and its
modulus |A| := (A2)

1
2 can be defined using a contour integration (cfr Section 2):

|A| =
i

2π

∫
Γ

√
λ(A2

− λ)−1dλ

where Γ is a contour around the spectrum of D2 which is a subset of R+.
In general, we set

|A| :=

√
A2 + πA

4 Here D commutes with σ whereas ∇ anticommutes with σ .
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where πA is the orthogonal projection onto the kernel of A2
[0]

. This defines a form provided Ker A2
[0]

has constant
dimension.

Remark 2. Note that for any α ∈ Ω(B, C`(E)),

strA
2
(α) = fpz=0sTR(α(A2

+ πA)−z) = fpε=0str(αe−εA2
)

since A2 is a differential operator valued form and hence has vanishing Wodzicki residue.

The following proposition extends results of [19].

Proposition 3. Let P be a polynomial function. Forms strA
2
(P(A2)) and sres(P(|A|)) associated with a

superconnection A are closed. Their de Rham class is independent of the choice of connection 1-forms A[1].

Remark 3. The residue form sres(P(|A|)) is in fact insensitive to the projection πA which is a smoothing operator
and hence does not affect the Wodzicki residue.

Proof. We extend the argument used in [19] for the closedness of forms strA
2
(A2i ) to any strA

2
(P(A)). Eqs. (5) and

(3) extend, replacing the connection ∇ by the superconnection A and the weight Q by the Ψdo-valued form A2 of
order 2 [19], and we have

d strA
2
(P(A2)) = [A, strA

2
](P(A2)) + strA

2
([A, P(A2)])

= −
1
2

sres(P(A2)[A, log(A2
+ πA)])

= −
1
2

d
dt t=0

(
i

2π

∫
Γ

λt sres(P(A2)[A, (A2
+ πA − λ)−1

])dλ

)
= 0

since [A, (A2
+ πA − λ)−1

] is smoothing.
Similarly,

d sres(P(|A|)) = sres([A, P(|A|)]) = 0

since [A, log P(|A|)] = 0.
The forms are therefore closed.
Let us check that their de Rham classes are independent of the choice of superconnection. Let At be a smooth

one-parameter family of superconnections; then for any monomial P(A2) = A2i ,

d
dt

(strA
2
t (A2i

t )) =
d
dt

(fpε=0str(A2i
t e−εA2

t ))

=

i∑
j=1

fpε=0(str(A2(i− j−1)
t [At , Ȧt ]A

2 j
t e−εA2

t ) − εstr(A2i
t [At , Ȧt ]e−εA2

t ))

= ifpε=0(str([At , A2(i−1)
t Ȧt e−εA2

t ]) − εstr([At , A2i
t Ȧt e−εA2

t ]))

= ifpε=0(dstr(A2(i−1)
t Ȧt e−εA2

t ) − εdstr(A2i
t Ȧt e−εA2

t ))

= d[ifpε=0(str(A2(i−1)
t Ȧt e−εA2

t ) − εstr(A2i
t Ȧt e−εA2

t ))] (7)

is exact. Here we have used the fact that d
dt A

2
t = ȦtAt + At Ȧt = [At , Ȧt ], the graded commutator of At with the

Ψdo-valued form Ȧt . It follows that the de Rham class of strA
2
(A2i ) and hence of strA

2
(P(A2)) is independent of the

choice of connection.
Similarly, since |A|

j
=

i
2π

∫
Γ λ

j
2 (A2

+ πA − λ)−1dλ and since

d
dt

(A2
t + πA − λ)−1

= −(A2
t + πA − λ)−1 d

dt
A2

t (A
2
t + πA − λ)−1

= −(A2
+ πA − λ)−1

[At , Ȧt ](A2
t + πA − λ)−1

= −[At , (A2
t + πA − λ)−1Ȧt (A2

t + πA − λ)−1
],
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it follows that the variation

d
dt

(sres(|At |
j )) = sres

(
i

2π

[∫
Γ

λ
j
2

d
dt

(A2
t + πA − λ)−1dλ

])
= −

i
2π

sres
(∫

Γ
λ

j
2 [At , (A2

t + πA − λ)−1Ȧt (A2
t + πA − λ)−1

]dλ

)
= −

i
2π

sres
(∫

Γ
λ

j
2 [At + πA, (A2

t + πA − λ)−1Ȧt (A2
t + πA − λ)−1

]dλ

)
since res[πA, ·] = 0

= −
i

2π
sres

([
At + πA,

∫
Γ

λ
j
2 Ȧt (A2

t + πA − λ)−2
])

since [At + πA, (A2
t + πA − λ)−1

] = 0

= −
i

2π
sres

([
At ,

∫
Γ

λ
j
2 Ȧt (A2

t + πA − λ)−2
])

since res[πA, ·] = 0

=
j
2

i
2π

sres
([

At ,

∫
Γ

λ
j−2
2 Ȧt (A2

t + πA − λ)−1
])

=
j
2

sres([At , Ȧt (A2
t + πA)

j−2
2 ])

=
j
2

d(sres(Ȧt |At |
j−1)) (8)

is also exact, which ends the proof of the proposition. �

4.2. Chern forms associated with superconnections A = ∇ + D

We now specialise to the case A[2] = 0 and consider a superconnection A = D + ∇ in the graded set-up and
A = σ D + ∇ in the ungraded set-up. The following theorem compares the closed Chern forms strA

2
(A2i ) with the

(non-closed in general) weighted Chern forms.

Theorem 1. In the Z2-graded set-up and provided with the superconnection A = D + ∇, the (closed) Chern forms
strA

2
(A2 j )[2 j] differ from the (non-closed) Q-weighted Chern forms strQ(Ω j ) by a local map, i.e.

strA
2
(A2 j )[2 j] − strQ(Ω j ) = f̄ j (∇̄)

for some f̄ j : C(P̄) → Ω(B, P̄).

In the ungraded set-up and provided with the superconnection A = σ D+∇, (closed) Chern forms strA
2
(A2 j )[2 j−1]

differ from the (non-closed) Q-weighted forms strQ(Ω j−1
[∇, σ D]) by a local map, i.e.

strA
2
(A2 j )[2 j−1] − jstrQ(Ω j−1

[∇, σ D]) = ḡ j (∇̄)

for some ḡ j : C(P̄) → Ω(B, P̄).

Remark 4. This does not hold any longer if A[2] 6= 0 as can easily be seen from the proof below. When A[2] = 0, on
the grounds of this proposition, strA

2
(A2 j )[2 j] can be interpreted as a renormalised version of strQ(Ω j ).

Proof. Let us observe in the graded case that since A2
= Q + [∇, D] + Ω , we have

strQ(A2 j )[2 j] = strQ(Ω j ),

and similarly in the ungraded case, we have

strQ(A2 j )[2 j−1] = jstrQ(Ω j−1
[∇, σ D]).
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Using a Campbell–Hausdorff formula for pseudodifferential operators [16] combined with formula (2) extended to
form valued weights, we have

strA
2
(A2 j )[2 j] = strQ(A2 j )[2 j] + (strA

2
(A2 j )[2 j] − strQ(A2 j )[2 j])

= strQ(Ω j ) −
1
2

sres(A2 j (log A2
− log Q))[2 j]

= strQ(Ω j ) −
1
2

sres(A2 j (log(1 + Q−1([∇, D] + Ω))

+ [log Q, log(1 + Q−1([∇, D] + Ω))] + · · ·))[2 j]

= strQ(Ω j−1) + fi (∇),

with f j (∇) the Wodzicki residue of a polynomial expression in D, D−1 and ∇ of total form degree 2 j . As a Wodzicki
residue, it is insensitive to a perturbation of the connection by a smoothing operator so that f j (∇) = f̄ j (∇̄). This
shows that

strA
2
(A2i )[2 j] − strQ(Ω j ) = f̄ j (∇̄)

is local. A similar computation shows that

strA
2
(A2 j )[2 j−1] − jstrQ(Ω j

[∇, σ D]) = ḡ j (∇̄)

is also local. �

4.3. Residue Chern forms as Wodzicki residues

In order to derive an explicit expression for the residue Chern forms in terms of Wodzicki residues, we borrow the
following notation from [7,9]. For A in Cl(M, E) of order a, a given ∆ ∈ C`(M, E) and any j ∈ N we set

A( j)
:= ad j

∆(A), where ad∆(B) = [∆, B],

so that A(0)
= A, A( j+1)

= ad∆(A( j)) = [∆, A( j)
]. When ∆ of order 2 has scalar leading symbol then A( j) has order

a + j .

Proposition 4. Let A be a superconnection associated with an operator D, the square of which has scalar leading
symbol. For any positive integer K

sres(|A|
2 j−1)[K ] =

K∑
l=0

∑
k1≥0

· · ·

∑
kl≥0

(
2 j−1

2

)
· · ·

(
2 j−1

2 − |k| − l
)

(k1 + · · · + kl + l)!
c(k1, . . . , kl)

· sres((A2
[>0]

)(k1)(A2
[>0]

)(k2) · · · (A2
[>0]

)(kl )(D2)
2 j−1

2 −|k|−l)[K ],

where we set c(k1) = 1 for any positive integer k and where, for a multi-index k = (k1, . . . , kl) for j > 1, we set

c(k1, . . . , kl) =
(k1 + · · · + kl + l)!

k1! · · · k j !(k1 + k2 + 1) · · · (k1 + · · · + kl−1 + l)
.

In particular,

sres(|A|)[1] =

∑
k≥0

(
1
2

)
· · ·

(
1
2 − k − 1

)
(k + 1)!

· sres((A2
[1]

)(k)(D2)
1
2 −k−1).

Remark 5. If D is a differential operator then A2 is a differential operator and sres(|A|
2 j ) = sres((A2) j ) which is

why we only consider odd powers.
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Remark 6. Since the operator order of A2
[>0]

is no larger than 1, (A2
[0]

)(k) has order ≤ 1 + k and

(A2
[>0]

)(k2) · · · (A2
[>0]

)(kl )(D2)
2 j−1

2 −|k|−l has order ≤ 2 j − 1 − |k| − l which decreases as |k| or l increases. Thus
the Wodzicki residue vanishes for large enough |k| or l and the seemingly infinite series in the proposition is in fact
finite.

Proof. We introduce notation borrowed from [9,7]. Let T ∈ C`(M, E) and Tk, k ∈ N be operators in C`(M, E) with
decreasing order in k. Then

T '

∑
k≥0

Tk ⇐⇒ ∀N ∈ N, ∃K (N ) T −

K (N )∑
k=0

Tk ∈ C`−N (M, E).

With this notation, for any non-negative integer h we have [9] (see the proof of Proposition 4.14)

(λ − D2)−h A '

∑
k≥0

(h + k − 1)!

(h − 1)!k!
A(k)(λ − D2)−h−k .

As a result, the j-th term in (6) reads

(λ − D2)−1A2
[>0]

· · · (λ − D2)−1A2
[>0]

(λ − D2)−1

'

∑
k1≥0

(A2
[>0]

)(k1)(λ − D2)−2−k1A2
[>0]

· · · (λ − D2)−1A2
[>0]

(λ − D2)−1

'

∑
k1≥0

(A2
[>0]

)(k1)
∑
k2≥0

(−1)k2(k1 + k2)!

k1!k2!
(A2

[>0]
)(k2)(λ − D2)−3−k1−k2A2

[>0]

· · · (λ − D2)−1A2
[>0]

(λ − D2)−1

'

∑
k1≥0

(A2
[>0]

)(k1)
∑
k2≥0

(k1 + k2)!

k1!k2!
(A2

[>0]
)(k2)

∑
k3≥0

·
(k1 + k2 + k3 + 1)!

(k1 + k2 + 1)!k3!
(A2

[>0]
)(k3)(λ − D2)−4−k1−k2−k3A2

[>0]
· · · (λ − D2)−1A2

[>0]
(λ − D2)−1

'

∑
|k|≥0

c(k1, . . . , k j )(A2
[>0]

)(k1)(A2
[>0]

)(k2) · · · (A2
[>0]

)(k j )(λ − D2)−|k|− j−1.

Letting Γ be a contour around the spectrum spec(D2) ⊂ R+, it follows that for any positive integer K ,(
(A2)

2i−1
2

)
[K ]

=

K∑
j=0

1
2iπ

∫
Γ

λ
2i−1

2

(
(λ − D2)−1A2

[>0]
· · · A2

[>0]
(λ − D2)−1A2

[>0]
(λ − D2)−1

)
[K ]

dλ

=

K∑
j=0

∑
|k|≥0

c(k1, . . . , k j )

(
(A2

[>0]
)(k1)(A2

[>0]
)(k2) · · · (A2

[>0]
)(k j )

1
2iπ

∫
Γ

λ
2i−1

2 (λ − D2)−|k|− j−1dλ

)
[K ]

=

K∑
j=0

∑
|k|≥0

(
2i−1

2

)
· · ·

(
2i−1

2 − |k| − j
)

(|k| + j)!
c(k1, . . . , k j )

(
(A2

[>0]
)(k1)(A2

[>0]
)(k2)

· · · (A2
[>0]

)(k j )(D2)2i−1−|k|− j
)

[K ]

where the last equality follows by integration by parts. Applying the Wodzicki residue yields the result of the
proposition. �

5. Getzler’s rescaling

Let E → B be a Ψdo-vector bundle and let {Db, b ∈ B} be a smooth family of elliptic differential operators
parametrised by B acting on the fibres of E .

Getzler’s rescaling transforms a homogeneous form α[i] of degree i to the expression
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δε · α[i] · δ−1
ε =

α[i]
√

ε
i ,

so that a superconnection A = A[0] + A[1] + A[2] transforms to

Ãε = δε · A · δ−1
ε = A[0] +

A[1]
√

ε
+

A[2]

ε
.

Here we allow higher forms in the superconnection, keeping in mind later applications involving the Bismut
superconnection for families of Dirac operators. Following the usual conventions, for a given superconnection
A = A[0] + A[1] + A[2] we set

Aε :=
√

εÃε =
√

εδε · A · δ−1
ε =

√
εA[0] + A[1] +

A[2]
√

ε
.

Remark 7. Different notations are used in the literature; namely some authors set t :=
√

ε which leads to (see e.g.
[12])

Āt := At2 = tA[0] + A[1] +
A[2]

t
, (9)

notation which we shall also use in this paper.

The following result shows how the j-th (resp. residue) Chern form picks up the 2 j-form (resp. 2 j − 1-form)
degree part of strA

2
(A2 j ).

Proposition 5. Let A be a superconnection associated with a family of elliptic differential operators parametrised by
B. Then, with the notation of (9),

strA
2
(A2 j )[2 j] = fpt=0str(Ā2 j

t e−Ā2
t )[2 j]

and

sres(|A|
2 j−1)[2 j−1] =

1
2
√

π
fpt=0str(Ā2 j

t e−Ā2
t )[2 j−1].

Proof. Recall that since D is a differential operator, is A2 a differential operator valued form and (see Proposition 1)

strA
2
(A2 j ) = fpε→0str(A2 j e−εA2

).

On the other hand, for any t > 0 we have

str(Ā2 j
t e−Ā2

t )[2 j] = str(A2 j
t2 e−A2

t2 )[2 j]

= str(t2 j Ã2 j
t2 e−t2Ã2

t2 )[2 j]

= str(t2 jδt2A2 jδ−1
t2 e−t2δt2A

2δ−1
t2 )[2 j]

= str(t2 jδt2(A2 j e−t2A2
)δ−1

t2 )[2 j]

= str(A2 j e−t2A2
)[2 j].

Since the r.h.s. is of the type str(A2 j e−εA2
) with A2 an elliptic differential operator valued form and A2 j

∈

Ω(B, C`(E)), it has a known asymptotic expansion at 0 and taking finite parts when t → 0 yields the first part
of the proposition.

Similarly, since D is a differential operator we have

sres(|A|
2 j−1) =

1
2
√

π
fpt=0(tstr(A2i e−t2A2

))

and for any t > 0
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str(Ā2 j
t e−Ā2

t )[2 j−1] = str(A2 j
t2 e−A2

t2 )[2 j−1]

= str(t2 j Ã2 j
t2 e−t2Ã2

t2 )[2 j−1]

= str(t2 jδt2A2 jδ−1
t2 e−t2δt2A

2δ−1
t2 )[2 j−1]

= str(t2 jδt2(A2 j e−t2A2
)δ−1

t2 )[2 j−1]

= tstr(A2 j e−t2A2
)[2 j−1].

As before, since the r.h.s. is of the type str(A2 j e−εA2
) with A2 an elliptic differential operator valued form and

A2 j
∈ Ω(B, C`(E)), it has a known asymptotic expansion at 0 and taking finite parts when t → 0 yields the first part

of the lemma. Taking finite parts when t → 0 therefore yields the second part of the lemma. �

6. Superconnections associated with Dirac operators

We now specialise to Chern forms built from superconnections associated with families of Dirac operators. Let
π : M → B be a smooth fibration of closed spin manifolds with fibre M and E → B a Clifford bundle with an
associated family of Dirac operators parametrised by B. The vector bundle E := π∗E is an (infinite rank) Ψdo-vector
bundle with fibres modelled on C∞(M/B, EM/B). According to whether the manifolds are even or odd dimensional,
E will be Z2-graded or not.

The vertical Riemannian metric gT M and Hermitian metric hE on E induce an L2-inner product on E . From a
connection ∇

E on E compatible with hE, one can build a connection ∇̃
E
Xσ := ∇

E
X̃
σ(b) on E = π∗E where X̃ is the

horizontal lift of X ∈ Tb B and from there a unitary connection ∇
E on E .

The corresponding Bismut superconnection associated with this fibration reads

A = D + ∇
E

+ c(T ) even case, A = σ D + ∇
E

+ σc(T ) odd case,

where T ∈ Ω2(M, T M) is the curvature of the horizontal distribution on M and c the Clifford multiplication.
Along the lines of the heat-kernel proof of the index theorem we introduce the kernel kε(A2) of e−εA2

for some
ε > 0. Since D is a family of Dirac operators, we have (see e.g. chap. 10 in [4] in the even dimensional case and [2]
in the odd dimensional case)

kε(A2)(x, x) ∼ε→0
1

(4πε)
n
2

∞∑
j=0

ε j k j (A2)(x, x). (10)

Proposition 6. Let A be a superconnection adapted to a smooth family of Dirac operators parametrised by B.

(1) The j-th Chern form associated with A is given by an integration along the fibre of M:

strA
2
(A2 j ) =

(−1) j j !

(4π)
n
2

∫
M/B

str(k j+ n
2
(A2)).

(2) If the kernel of D has constant dimension, the j-th residue Chern form associated with A reads

√
πsres(|A|

2 j−1) =
(−1) j (2 j − 1)!!

(4π)
n
2 2 j−1

∫
M/B

str(k j+ n−1
2

(A2)).

Here |A|
2 j−1 is defined as before by the contour integral

|A|
2 j−1

=
i

2π

∫
Γ

λ
2 j−1

2 (A2
+ πA − λ)−1dλ.

Remark 8. It follows from this last formula that adding a smoothing Ψdo-valued 0-form to A2 does not affect the
residue form sres(|A|

2 j−1)[2 j−1] so that one expects formulae for the residue Chern form to be independent of πA.

Proof. The trace under the integral sign is just the matrix trace for endomorphisms of a finite rank vector bundle E
whereas on the left-hand side the trace is computed in the Hilbert space of square-integrable sections of E over M .
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By the above remark, A being a differential operator, it has vanishing Wodzicki residue and we have

strA
2
(A2 j ) = fpε=0str(A2 j e−εA2

) = (−1) j fpε=0(∂
j
ε str(e−εA2

)|ε=0).

By Eq. (10), this yields

strA
2
(A2 j ) = (−1) j fpε=0(∂

j
ε str(e−εA2

))

= (−1) j fpε=0

(
∂ j
ε

∫
M/B

str(kε(A2))

)
=

(−1) j

(4π)
n
2

fpε=0

(
∂ i
ε

∞∑
j=0

ε j− n
2

∫
M/B

str(k j (A2))

)

=
(−1)i

(4π)
n
2

fpε=0

(
∞∑

l=0

(
l −

n
2

)
· · ·

(
l −

n
2

− j + 1
)

εl− n
2 − j

∫
M/B

str(kl(A2))

)

=
(−1) j j !

(4π)
n
2

∫
M/B

str(k j+ n
2
(A2)).

This proves the first part of the proposition. On the other hand, again by (10) we have

fpε=0str(
√

ε(A2 j e−εA2
)) = (−1) j fpε=0(

√
ε∂ j

ε str(e−εA2
))

= (−1) j , fpε=0

(
√

ε∂ j
ε

∫
M/B

str(kε(A2))

)
=

(−1) j

(4π)
n
2

fpε=0

(
√

ε∂ j
ε

∞∑
l=0

εl− n
2

∫
M/B

str(kl(A2))

)

=
(−1) j

(4π)
n
2

fpε=0

(
∞∑

l=0

(
l −

n
2

)
· · ·

(
l −

n
2

− j + 1
)

εl− n−1
2 − j

∫
M/B

str(kl(A2))

)

=

(−1) j
(

j −
1
2

) (
j −

3
2

)
· · ·

1
2

(4π)
n
2

∫
M/B

str(k j+ n−1
2

(A2))

=
(−1) j (2 j − 1)!!

(4π)
n
2 2 j−1

∫
M/B

str(k j+ n−1
2

(A2)).

On the other hand, Lemma 1 applied to g(ε) = str(A2 j e−εA2
) then yields

fpε=0(
√

εstr(A2 j e−εA2
)) = Γ

(
1
2

)
resz=0str(A2 j (A2)−z− 1

2 )

= 2
√

πsres(A2 j (A2)−
1
2 )

so that

√
πsres(A2 j (A2)−

1
2 ) =

(−1) j (2 j − 1)!!

(4π)
n
2 2 j

∫
M/B

str(k j+ n−1
2

(A2))

which proves the second part of the proposition. �

The following result relates the j-th (resp. residue) Chern form to the 2 j-th-form (resp. 2 j − 1-th-form) degree
part of the Chern character limt→0 ch(At ).

Theorem 2. In the Z2-graded case the j-th Chern form associated with a superconnection A reads
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strA
2
(A2 j )[2 j] =

(−1) j j !

(2iπ)
n
2

(∫
M/B

Â(M/B) ∧ ch(EM/B)

)
[2 j]

= (−1) j j !(lim
t→0

ch(At ))[2 j]. (11)

In the ungraded case the j-th residue Chern form associated with the superconnection with kernel of D of constant
dimension reads

sres(|A|
2 j−1)[2 j−1] =

(−1) j (2 j − 1)!!

(2iπ)
n+1

2 2 j−1

(∫
M/B

Â(M/B) ∧ ch(EM/B)

)
[2 j−1]

=
(−1) j (2 j − 1)!!

2 j−1√π
(lim
t→0

ch(At ))[2 j−1]. (12)

Proof. As in [4] par. 10.4, using the asymptotic expansion of the kernel kt (x, x) of the heat operator e−tA2
:

kt (x, x) ∼t→0
1

(4π t)
n
2

∞∑
j=0

t j k j (x, x)

we have

ch(At ) = δt (str(e−tA2
))

∼t→0 (4π t)−
n
2
∑

j

t j
∫
M/B

δt (str(k j (A2)))

∼t→0 (4π)−
n
2
∑
j,p

t j−(n+p)/2
(∫
M/B

str(k j (A2))

)
[p]

,

so that

fpt=0ch(At )[p] = (4π)−
n
2

(∫
M/B

str(k p+n
2

(A2))

)
[p]

. (13)

• Z2-graded case. The family index theorem [1] (see also Theorem 10.23 in [4]) yields the existence of the limit as
t → 0 and

lim
t→0

ch(At ) = (2iπ)−
n
2

∫
M/B

Â(M/B) ∧ ch(EM/B).

Combining these two facts leads to(∫
M/B

str(k n+2 j
2

(A2))

)
[2 j]

=
(4π)

n
2

(2iπ)
n
2

(∫
M/B

Â(M/B) ∧ ch(EM/B)

)
[2 j]

.

Inserting this in Proposition 6 yields

strA
2
(A2 j )[2 j] =

(−1) j j !

(2iπ)
n
2

(∫
M/B

Â(M/B) ∧ ch(EM/B)

)
[2 j]

and hence (11).
• Ungraded case. The family index theorem yields the existence of the limit and [2]

lim
t→0

ch(At ) =

√
π

(2π i)
n+1

2

∫
M/B

Â(M/B) ∧ ch(EM/B).

Combined with (13) this yields(∫
M/B

str(k n+2 j−1
2

(A2))

)
[2 j−1]

=
√

π
(4π)

n
2

(2iπ)
n+1

2

(∫
M/B

Â(M/B) ∧ ch(EM/B)

)
[2 j−1]

.

Inserting this in Proposition 6 gives
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sres(|A|
2 j−1)[2 j−1] =

(−1) j (2 j − 1)!!

(2iπ)
n+1

2 2 j−1

(∫
M/B

Â(M/B) ∧ ch(EM/B)

)
[2 j−1]

and hence (12). �

Corollary 1. Whenever the fibration M → B is trivial, then

trQ(Ω j ) −
(−1) j j !

(2iπ)
n
2

(∫
M/B

Â(M/B) ∧ ch(E)

)
[2 j]

= f̄ j (∇̄) (14)

is local in the sense of the above definition.

Example 3. In the Z2-graded case, 1
(2iπ)

n
2
(
∫
M/B Â(M/B) ∧ ch(EM/B))[2] corresponds to the curvature on the

determinant line bundle associated with a family of Dirac operators [3]. The formula corresponding to j = 1 in
the above theorem

strA
2
(A2)[2] = −

1

(2iπ)
n
2

(∫
M/B

Â(M/B) ∧ ch(EM/B)

)
[2]

expresses the curvature on the determinant bundle as −
1

(2i)
n
2

times the degree 2 part of the first Chern form associated

with the superconnection A, thereby generalising the relation that holds in finite dimensions (corresponding to the
case n = 0 of a zero-dimensional fibre M) relating the first Chern form on a finite rank supervector bundle with minus
the curvature on its determinant bundle (see [17] for a discussion concerning this relation).

Example 4. In the ungraded case, (
∫
M/B Â∧ch(EM/B))[2 j−1] corresponds to the curvature of a gerbe with connection

associated with the family of Dirac operators [5,8,12]. The formula obtained in the above theorem for j = 2

sres(A2
|A|)[3] =

3

2(2iπ)
n+1

2

(∫
M/B

Â ∧ ch(EM/B)

)
[3]

(15)

where we have set |A| = (A2)
1
2 , relates this curvature with the degree 3 part of the residue Chern form sres(A2

|A|)[3].

7. Transgressed residue Chern forms

Let as before π : M → B be a smooth fibration of closed odd dimensional spin manifolds with fibre M and
E → B a Clifford bundle. The vector bundle E := π∗E is an (infinite rank) Ψdo-vector bundle with fibres modelled
on C∞(M/B, EM/B). Let {Db, b ∈ B} be a smooth family of Dirac operators associated with this fibration.

We need to work with invertible operators and introduce for this purpose a covering of B by open sets {Uλ}λ∈R
with the property that for any b ∈ Uλ the (discrete) spectrum of Db does not contain λ. Then D(λ) = D − λI is a
family of Dirac type operators which is everywhere invertible on Uλ and

Aλ := σ D(λ) + ∇
E

+ σ
c(T )

4
is a superconnection associated with D(λ).

With the notation of (9) we set

Āt := tσ D + ∇
E

+ σ
c(T )

4t
,

where σ is the grading, which defines a smooth family of superconnections adapted to D.
Let for t > 0

Āλ,t := σ t D(λ) + ∇
E

+ σ
c(T )

4t
,

which defines a smooth family of superconnections adapted to D(λ). The following technical result will be useful for
what follows.

Lemma 2. Let γ be a differential operator valued form on B.
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(1) The function

t 7→ str(γ e−Ā2
λ,t )

decreases faster than any power of t as t → ∞. As t → 0 it behaves as a finite linear combination of expressions∑
∞

j=0 α j t j−δ for some integer δ and complex numbers α j , βk .
(2) If γ is an even form, then:

(a) str(σγ e−Ā2
λ,t ) only involves odd powers of t and t−1; in particular,

fpt=0str(σγ e−Ā2
λ,t ) = 0.

(b) For any non-negative integer j
(str(σγ e−Ā2

λ,t ))[2 j] = 0 ∀t > 0.

Remark 9. The lemma easily extends to Ψdo-valued forms if we allow for logarithmic divergences in t in which case
δ is a real number.

Proof. (1) Let us first introduce notation similar to the notation of [9]. Let T ∈ C`(M, E) and Tk, k ∈ N be operators
in C`(M, E) with decreasing order in k. Then

T ∼

∑
k≥0

Tk (16)

⇐⇒ ∃C ∈ C`(M, E) invertible, s.t. ∀N ∈ N, ∃K (N )(
T −

K (N )∑
k=0

Tk

)
C ∈ C`−N (M, E).

In the sequel, the operator e−t2 D2
plays the role of the invertible operator C .

We also need to extend to Ψdo-valued forms, notation previously used for ordinary classical pseudodifferential
operators. For β ∈ Ω(B, C`(E)) and any j ∈ N we set

α( j)(β) := ad j
D2(β), where adD2(β) = [D2, β],

so that β(0)
= β, β( j+1)

= adD2(β( j)) = [D2, β( j)
].

Since Āλ,t = tσ D(λ) + (Āλ,t )[>0] we have

Ā2
λ,t = t2 D(λ)2

+ (Ā2
λ,t )[>0]

= t2 D(λ)2
+ σ

[
t[∇E , D(λ)] +

[∇
E , c(T )]

4t

]
+

1
4
[D(λ), c(T )] +

c2(T )

16t2 + ΩE

= t2 D(λ)2
+ σ(Āλ,t )[>0,od] + (Āλ,t )[>0,ev]

where we have set (Āλ,t )[>0,od] := t[∇E , D(λ)] +
[∇

E ,c(T )]
4t which only involves odd powers of t and t−1.

Duhamel’s formula then yields (see e.g. [9])

e−Ā2
λ,t = (−1)n

∫
∆l

e−u0t2 D2
(Ā2

λ,t )[>0] · · · e−ul−1t2 D(λ)2
(Ā2

λ,t )[>0]e−ul t2 D(λ)2
du1 · · · dul

∼

∑
|k|≥0

(−1)|k|t2|k|c(k)

(|k| + n)!
((Ā2

λ,t )[>0])
(k1) · · · ((Ā2

λ,t )[>0])
(kl )e−t2 D(λ)2

.

Here ∆l := {(u0, . . . , ul), ui ≥ 0,
∑l

i=0 ui = 1} is the unit simplex and with the coefficient c(k) as previously
defined.

Since (Ā2
λ,t )[>0] has positive degree, only a finite number of terms of the sum will contribute for a fixed form

degree.
Now, for a differential operator C of order c, the map t 7→ str(Ce−t2 D2

) decreases faster than any power of t
at infinity and behaves asymptotically as follows as t → 0:

str(Ce−t2 D2
) ∼t→0

∞∑
j=0

α j t j−c−n (17)
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where c is the order of C and n the dimension of the manifold.
Since expressions of the type (Ā2

λ,t )[>0] are linear combinations of differential operator valued forms with
coefficients given by powers of t , for any Ψdo-valued form γ on B

str(γ ((Ā2
t )[>0])

(k1) · · · ((Ā2
t )[>0])

(kn)e−t2 D2
)

has the expected asymptotic behaviour at 0 and at ∞. It follows that str(γ e−Ā2
t ) has a similar asymptotic behaviour.

This ends the proof of the first part of the lemma.
(2) The second part of the lemma requires a closer look at the expressions involved. Since

(Āλ,t )[>0] = σ(Āλ,t )[>0,od] + (Āλ,t )[>0,ev]

and since str vanishes on terms of the type σβ, in the expression

str(σγ e−Ā2
λ,t ) =

∑
|k|≥0

(−1)|k|t2|k|c(k)

(|k| + n)!
str(σγ ((Ā2

λ,t )[>0])
(k1) · · · ((Ā2

λ,t )[>0])
(kl )e−t2 D(λ)2

)

(which we recall only contains a finite number of terms for fixed form degree) only those terms will remain that
involve an odd number of expressions of the type (Āλ,t )[>0,od] and hence odd powers of t and t−1. Since γ is

assumed to be of even degree, it follows that the total expression str(σγ e−Ā2
λ,t ) is an odd degree form which only

involves odd powers of t and t−1 so that

fpt=0(str(σγ e−Ā2
λ,t )) = 0; (str(σγ e−Ā2

λ,t ))[2 j] = 0 ∀t > 0.

This proves the second part of the lemma. �

The following theorem provides a transgression formula for the residue Chern forms sres(|A|
2 j−1)[2 j−1].

Theorem 3. On every open subset Uλ, the following transgression formula holds:

sres(|Aλ|
2 j−1)[2 j−1] = a j · d(η̃λ)[2 j−2],

where d is the exterior differential, a j :=
(−1) j (2 j−1)!!

2 j−1 and

η̃λ = fpt=0

∫
∞

t
str
[

d
ds

Āλ,se−Ā2
λ,s

]
ds

is the η-invariant associated with D(λ) (see [2,12]).

Proof. We first show that sres(|A|
2 j−1)[2 j−1] = sres(|Aλ|

2 j−1)[2 j−1] and then show a transgression formula for
sres(|Aλ|

2 j−1)[2 j−1].
(1) Let us consider a smooth family D(λ)(ε) := D − ελI of first-order elliptic differential operators interpolating D

and D(λ) between 0 and 1 and the corresponding superconnections

Āλ,t (ε) := Aλ,t − εσλI.

Differentiating w.r.t. ε we have
d
dε

str(e−Ā2
λ,t (ε)) = −str

([
Āλ,t (ε),

d
dε

Āλ,t (ε)

]
e−Ā2

λ,t (ε)

)
= −str

([
Āλ,t ,

d
dε

Āλ,t (ε)e
−Ā2

λ,t (ε)

])
= −dstr

(
d
dε

Āλ,t (ε)e
−Ā2

λ,t (ε)

)
= λdstr(σe−Ā2

λ,t (ε)).

By part 2 of Lemma 2 applied to γ = I , we find that for any positive integer j
d
dε

str(e−Ā2
λ,t (ε))[2 j−1] = λd[str(σe−Ā2

λ,t (ε))][2 j−2] = 0

as a consequence of which str(e−Ā2
λ,t (ε))[2 j−1] is actually independent of ε and
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str(e−Ā2
λ,t )[2 j−1] = str(e−Ā2

t )[2 j−1].

By formula (12) in Theorem 2, the limit on either side therefore exists as t → 0 and

lim
t→0

str(e−Ā2
λ,t )[2 j−1] = lim

t→0
ch(At )[2 j−1]

=
(−1) j 2 j−1

(2 j − 1)!!
sres(|A|

2 j−1)[2 j−1]. (18)

(2) We now derive a transgression formula for str(e−Ā2
λ,t )[2 j−1], from which will then follow a transgression formula

for sres(|A|
2 j−1)[2 j−1] as a consequence of (18).

d
dt

str(e−Ā2
λ,t ) = −str

([
Āλ,t ,

d
dt

Āλ,t

]
e−Ā2

λ,t

)
= −str

([
Āλ,t ,

d
dt

Āt e
−Ā2

λ,t

])
= −dstr

(
d
dt

Āλ,t e
−Ā2

λ,t

)
. (19)

The first part of Lemma 2 provides a control as t → 0 and as t → ∞ on the asymptotic behaviour of the last
expression str[ d

ds Āλ,se−Ā2
λ,s ] arising in (19). Its primitive in t

η̃λ(t) :=

∫
∞

t
str
[

d
ds

Āλ,se−Ā2
λ,s

]
ds

which exists as a consequence of the invertibility of D(λ) has a similar asymptotic behaviour as t → 0. Integrating
(19) from t to ∞ and taking the finite part as t → 0 we find that the η invariant (we borrow notation from [12];
see the formula (3.19) there)

η̃λ := fpt=0η̃λ(t) = fpt=0

∫
∞

t
str
[

d
ds

Āλ,se−Ā2
λ,s

]
ds

transgresses fpt=0str(e−Ā2
λ,t ):

fpt=0str(e−Ā2
λ,t ) = dη̃λ.

But by the first part of the theorem (see Eq. (18)), this leads to

sres(|Aλ|
2 j−1)[2 j−1] =

(−1) j (2 j − 1)!!

2 j−1 d(η̃λ)[2 j−2].

8. Relation to Hamiltonian gauge anomalies

We first review a finite dimensional situation which will serve as a model for infinite dimensional generalisations.
We consider the finite dimensional Grassmann manifold Gr(n, n) consisting of rank n projections in C2n , which we
parametrise by grading operators F = 2P − 1, where P is a finite rank projection.

Lemma 3. The even forms

ω2 j = tr(F(dF)2 j ), (20)

where j = 1, 2, . . . are closed forms on Gr(n, n).

Proof. By the traciality of tr we have

dω2 j = dtr(F(dF)2 j )

= tr((dF)2 j+1)

= tr(F2(dF)2 j+1) since F2
= 1
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= −tr(F(dF)2 j+1 F) since FdF = −dF F

= −tr((dF)2 j+1 F2) since tr([A, B]) = 0
= −tr((dF)2 j+1)

= 0. � (21)

In fact it turns out that the cohomology of Gr(n, n) is generated by even (non-normalised) forms of the type
ω2 j , j = 1, . . . , n [15].

Let us now consider the infinite dimensional geometric set-up described in the previous section up to the fact that
π : M = M × B → B is now a trivial fibration with typical fibre a closed (Riemannian) spin manifold M .

On each open subset Uλ := {b ∈ B, λ 6∈ spec(Db)} ⊂ B there is a well-defined map5

F : B → C`0(M, E)

b 7→ Fb := (Db − λI )/|Db − λI |.

Since F2
b = Fb, Pb :=

I+Fb
2 is a projection, the range Gr(M, E) := Im F of F coincides with the Grassmannian

consisting of classical pseudodifferential projections P with kernel and cokernel of infinite rank, acting in the complex
Hilbert space H := L(M, E). Here L2(M, E) denotes the space of square-integrable sections of the vector bundle E
over the compact manifold M .

This map b 7→ Fb is generally not contractible and we want to define cohomology classes on B as in (11) up
to some modifications required by the specific situation. This problem usually arises in Hamiltonian quantisation in
field theory, when M is an odd dimensional manifold, the physical space. Although here we deal with even forms
for odd order operators, there is a relation to the previous discussion on odd forms for odd order operators which is
explained in the end of this section. The problem here is similar in spirit to the earlier discussion in as far as we want
to modify the naive cohomology classes, imitating the finite dimensional case, by local corrections arising from the
infinite dimensionality of the problem.

Indeed, in this infinite dimensional set-up traces are generally ill-defined, so that we cannot a priori extend the
above computation to Gr(M, E).6

However, we can define an analogue of (20) at the cost of replacing the trace by a weighted trace.

Proposition 7. Let Q ∈ C`(M, E) be a fixed admissible elliptic operator with positive order. The exterior differential
of the form

ω
Q
2 j (F) = trQ(F(dF)2 j ) (22)

on Gr(M, E):

dω
Q
2 j =

1
2q

res([log Q, F](dF)2k+1 F)

is a local expression which only depends on F modulo smoothing operators.

Proof. The locality and the dependence on F modulo smoothing operators follow from the expression of the exterior
differential in terms of a Wodzicki residue. To derive this expression, we mimic the finite dimensional proof, taking
into account that this time trQ is not cyclic:

dω
Q
2 j = dtrQ(F(dF)2 j )

= trQ((dF)2 j+1)

= trQ(F2(dF)2 j+1)

= −trQ(F(dF)2 j+1 F) since FdF = −dF F

5 Note here again the difference in conventions compared to [12]. We follow [6,5], whereas in [12] the operators Db are perturbed as
Db 7→ Db + h(Db) by a smoothing function h to avoid the zero modes.

6 Unless we restrict to the submanifold Grres(M, E) ⊂ Gr(M, E) consisting of points F such that F − ε is Hilbert–Schmidt for some fixed point
ε ∈ Gr(M, E) [18].
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=
1
q

res([log Q, F](dF)2 j+1 F) − trQ((dF)2 j+1 F2)

=
1
q

res([log Q, F](dF)2 j+1 F) − trQ((dF)2 j+1),

where we have used (3) to write

trQ([F, (dF)2 j+1 F]) = −
1
q

res(F[(dF)2 j+1 F, log Q]) =
1
q

res([F, log Q](dF)2 j+1 F).

Hence

trQ(F2(dF)2 j+1) =
1

2q
res([log Q, F](dF)2 j+1 F)

from which the result then follows. �

Let us consider the map

σ : B → C`0(M, E)/Cl−∞(M, E)

b 7→ F̄(b) := p ◦ F(b)

where p : C`0(M, E) → C`0(M, E)/Cl−∞(M, E) is the canonical projection map. In (quantum field theoretic)
applications the map b 7→ σ(b) = F̄b can be contractible without the map b 7→ Fb being contractible, a situation
which can occur when B is contractible. To justify this, let us first observe that discontinuities of F give rise to
jumps measured by smoothing operators (see e.g. [13]); indeed, since Db is a smooth family of self-adjoint elliptic
operators on a closed manifold, the discontinuities of Fb are measured by differences of projections Pb,µ over the finite
dimensional space generated by eigenvectors of D − λI with eigenvalues in [0, µ] or [µ, 0] according to whether µ

is positive or negative. Finite rank projections being smoothing, it follows that the discontinuities are measured by
smoothing operators so that the projected map b 7→ F̄b turns out to be continuous. Hence if B is contractible, the map
σ is contractible.

Example 5. A standard example in physics is the case when:

• the base space B is a subset of connections in a (Hermitian) finite rank vector bundle E → M over a closed
(Riemannian) spin manifold M ; since the space of connections in a fixed vector bundle is an affine space, if B is
the whole space of connections, it is contractible and the map σ is indeed contractible;

• the operators D∇ (written as DA with ∇ = d + A in local coordinates) are (twisted) Dirac operators coupled to a
connection ∇ ∈ B.

The following theorem builds “renormalised” forms from the original forms ω
Q
2 j .

Theorem 4. When σ(B) is contractible, there are even forms θ
Q
2 j such that

ωren
2 j = ω

Q
2 j − θ

Q
2 j

is closed. The forms θ
Q
2 j vanish when the order of (dF)2 j+1 is less than −dim M. This holds in particular if the order

of (dF)2 j is less than −dim M in which case ωren
2 j = ω

Q
2 j = tr(F(dF)2 j ) is independent of Q.

Remark 10. In the case of Dirac operators parametrised by gauge connections, the order of (dF)2 j+1 is less than
−dim M for all j > 0 if the dimension of M is less or equal to −3. This known fact is seen by a simple asymptotic
expansion of the differential dF . Using any fixed local trivialisation of the underlying vector bundle E , we write
D∇ = D + A and F = (D + A)|D + A|

−1 where D is the ordinary Dirac operator on Rn so that the infinitesimal
variation dF coincides up to order 1 in dA with (D + dA)|D + dA|

−1
− D|D|

−1. One can check that the square
of the operator |D|

−1(1 −
1
2 (D−1dA + dAD−1)) is equal to (D + dA)−2 up to operators of order −3. Hence

dF = (D + dA)|D + dA|
−1

= D/|D| −
1
2 |D|

−1 D−1
× [dA, D] + · · · up to operators of order −2. Here one

has to take into account that the commutator of |D| with A is of order zero. It follows that D/|D| differs from
(D + dA)/|D + dA| by an operator of order −1 so that dF has order −1.
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This argument fails for the case of families of metrics because the perturbations of Dirac operators are differential
operators of order one. It therefore does not extend to the case of Dirac operators parametrised by metrics since in that
case the principal symbol depends on the parameters and the differential dF is a zero-order operator.

Proof of Theorem 4. The form dω
Q
2 j being a Wodzicki residue, by Proposition 7, it only depends on the projection

F̄ and is therefore a pull-back by the projection map p of a form β
Q
2 j . The pull-back of β

Q
2 j with respect to σ is a

closed form θ
Q
2 j+1 on B which is exact since σ is contractible. Indeed, selecting a contraction σt with σ1 = σ and σ0

a constant map, we have the standard formula for the potential, dθ
Q
2 j = θ

Q
2 j+1, with

θ2 j =
1

2 j + 1

∫ 1

0
t2 j ισ̇t θ

Q
2 j+1(σt )dt (23)

where ιX is the contraction by a vector field X and the dot means differentiation with respect to the parameter t .
When the order of (dF)2 j+1 is less than −dim M the correction terms θ

Q
2 j vanish and if the order of (dF)2 j is less

than −dim M , the weighted trace trQ coincides with the usual trace so that the naive expression ω
Q
2 j is a closed form

independent of Q. �

The 2-form case arises in the quantum field theory gerbe [6]. Let B be a contractible parameter space for Dirac
operators. For each real number λ, let as before Uλ ⊂ B be the set of parameters for which the Dirac operator
D(λ) = D − λI does not have λ as an eigenvalue. Denote Uλλ′ = Uλ ∩ Uλ′ and let Lλλ′(A) be the top exterior power
of the spectral subspace Eλλ′ defined by λ < DA < λ′ for A ∈ Uλλ′ . The complex lines Lλλ′(A) form a complex line
bundle Lλλ′ over Uλλ′ . For λ < λ′ < λ′′ we have the canonical identification

Lλλ′ ⊗ Lλ′λ′′ = Lλλ′′ . (24)

This family of line bundles defines a gerbe over B. Since B is contractible this gerbe is trivial in the sense that

Lλλ′ = Lλ ⊗ L∗

λ′ (25)

for some line bundles Lλ → Uλ. The curvature of Lλλ′ is 1/2π times

ω2
λλ′

= tr(P(λλ′)(dP(λλ′))2) (26)

where P(λλ′) is the projection onto Eλλ′ .
Denote as before by F(λ) the grading operator (DA − λ)/|DA − λ| on Uλ and let P(λ) =

1
2 (F(λ) + 1) be the

corresponding spectral projection. In the Hilbert–Schmidt case, when the grading operators are in Grres(M, E) one
proves by a direct computation that

ω2
λλ′

= ω2
λ

− ω2
λ′

(27)

on Uλλ′ with

ω2
λ

=
1
8

tr(F(λ)(dF(λ))2) = tr(P(λ)(dP(λ))2). (28)

Remark 11. This last equality follows from the cyclicity of the trace on Hilbert–Schmidt operators. Indeed, since
dP(λ)P(λ) + P(λ)dP(λ) = dP(λ) we have

tr(F(λ)(dF(λ))2) = 8tr(P(λ)(dP(λ))2) − 4tr((dP(λ))2)

= 8tr(P(λ)(dP(λ))2) − 4dtr(P(λ)dP(λ))

= 8tr(P(λ)(dP(λ))2) + 4dtr(dP(λ)P(λ))

= 8tr(P(λ)(dP(λ))2) − 4dtr(d P(λ)P(λ))

= 8tr(P(λ)(dP(λ))2).
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In the general case the forms ω2
λ have to be replaced by the ‘renormalised’ forms as in Theorem 4. However, we

still have

Theorem 5. The cocycle of forms ω2
λλ′

is trivialised by 1
8 times the forms

ω2
λ

= trQ(F(λ)(dF(λ))2) − θ
Q
2 (29)

or equivalently by 1
8 times the forms

ρ2
λ

= 8trQ(P(λ)(dP(λ))2) − θ
Q
2

where θ
Q
2 is as in Theorem 4 (with j = 1), restricted to the open set Uλ. In particular,

ω2
λ

− ω2
λ′

= ρ2
λ

− ρ2
λ′

= tr(F(λ)(dF(λ))2
− F(λ′)(dF(λ′))2)

= tr(P(λ)(dP(λ))2
− P(λ′)(dP(λ′))2). (30)

Proof. First observe that the correction terms θ
Q
2 arising in the differences of the forms ω2

λ on the intersections Bλλ′

cancel: they do not depend on the parameter λ since a change of λ gives rise to finite rank perturbations of F(λ) and
hence to smoothing perturbations on which the Wodzicki residue vanishes.

Let us show first (30). For λ < λ′ we have

trQ((dP(λ))2) − trQ((dP(λ′))2) = trQ((dP(λ))2
− (dP(λ′))2)

= trQ((dP(λλ′))2
+ dP(λ′)dP(λλ′) + dP(λλ′)dP(λ′))

= tr(dP(λ′)dP(λλ′) + dP(λλ′)dP(λ′))

= 0,

since tr(dP)2
= 0 for any finite rank projector and by cyclicity of the ordinary trace, from which it follows that

trQ(F(λ)(dF(λ))2) − trQ(F(λ′)(dF(λ′))2) = 8(trQ(P(λ)(dP(λ))2) − trQ(P(λ′)(dP(λ′))2)).

To show (29) we expand ωλ
2 in powers of the difference projection P(λλ′) and observe that the zeroth-order term is

equal to ωλ′

2 , the third-order term is ωλλ′

2 . The mixed terms are ordinary traces, since the operators contain the finite
rank projector P(λλ′) as a factor; using the cyclicity of the trace and repeatedly dP P = PdP = dP for any projector
and dP P ′

+ PdP ′
= 0 for any pair of mutually orthogonal projectors, we get

ωλ
2 − ωλ′

2 = tr(P(λλ′)dP(λλ′)dPλλ′) + tr(P(λ′)dP(λ′)dP(λλ′))

+ tr(P(λ′)dP(λλ′)dP(λ′)) + tr(P(λ′)dP(λλ′)dP(λλ′))

+ tr(P(λλ′)dP(λ′)dP(λ′)) + tr(P(λλ′)dP(λ′)dP(λλ′)) + tr(P(λλ′)dP(λλ′)dP(λ′))

= ωλλ′

2 − 3tr((1 − P(λ′) − P(λλ′))dP(λ′)dP(λλ′)).

Next for any triple of mutually orthogonal projectors one has tr(PdP ′dP ′′) = 0, again by the above mentioned
operator identities; applying this to P = 1 − P(λ′) − P(λλ′), P ′

= P(λ′) and P ′′
= P(λλ′) we see that the mixed

terms on the right-hand side of the above equation vanish and the theorem follows. �

Remark 12. Actually, this is just the degree 2 cohomology part of the statement that the Chern characters for direct
summand in vector bundles add up to the Chern character of the sum; for the chosen curvature forms the statement is
valid on the level of de Rham forms, not just for de Rham classes.

The forms ωλ
2 are related but not equal to the gerbe eta forms studied in [12]. Let G be the group of smooth

based gauge transformations acting on smooth sections C∞(M, E) as unitary operators. On the base B = A/G
equipped with the open cover Vλ = π(Uλ) we have well-defined eta forms ηλ such that dηλ = Ω3, where Ω3 is
the Dixmier–Douady 3-cohomology class classifying the gerbe on the base B. (Here we ignore possible torsion in



J. Mickelsson, S. Paycha / Journal of Geometry and Physics 57 (2007) 1789–1814 1813

cohomology and work with de Rham representatives.) Let π : A → A/G be the canonical projection where G is the
gauge group. The pull-back π∗(Ω3) is exact, dΘ = π∗(Ω3). These are related to ωλ

2 , as cohomology classes, by

[ωλ
2 ] = [Θ − π∗(ηλ)].

The above relation holds only in cohomology, not as a relation of forms. This is related to the fact that the difference of
the pull-back forms π∗(ηλ) must vanish in gauge directions whereas the difference ωλ

2 − ωλ′

2 = ωλλ′

2 is non-vanishing
even in gauge directions. However, we have

Proposition 8. Restricted to gauge orbits, the forms ωλλ′

2 vanish as cohomology classes. More precisely, ωλλ′

2 = dωλλ′

1
on gauge orbits, where

ωλλ′

1 (X) = −tr(X P(λλ′)).

Here we can use ordinary trace since P(λλ′) has finite rank; X is an element of the Lie algebra of G acting as
multiplication operator in the Hilbert space H.

Proof. The gauge group acts on projections by conjugation P 7→ g Pg−1 and so

(dωλλ′

1 )(X, Y ) = LXωλλ′

1 (Y ) − LY ωλλ′

1 (X) − ωλλ′

1 ([X, Y ])

= −tr(Y [P(λλ′), X ]) + tr(X [P(λλ′), Y ]) + tr([X, Y ]P(λλ′))

= −tr([X, Y ]P(λλ′))

= tr(P(λλ′)[[P(λλ′), X ], [P(λλ′), Y ]])

= ωλλ′

2 (X, Y ),

where in the last step we have used the projection property P2
= P and the cyclicity of trace for finite rank operators;

LX is the Lie derivative by vector field along gauge orbits corresponding to the conjugation action of the group G.
�

Remark 13. A similar modification can be made for the gauge action on the local forms ωλ
2 to show that the action is

consistent on overlaps. Again, restricting to gauge orbits, using F2
= 1 and rearranging terms, one can write

trQ(F(λ)[F(λ), X ], [F(λ), Y ]) = −4trQ([X, Y ]F(λ)) + 2trQ(2[X F(λ), Y ]

+ [F(λ)X F(λ)Y, F(λ)] + [XY, F(λ)])

= −4trQ([X, Y ]F(λ)) + 2res(2[log Q, X F(λ)]Y + [log Q, XY ]F(λ)

+ [log Q, F(λ)X F(λ)Y ]F(λ))

where on the right the first term is a trivial cocycle and the rest, being a residue, does not depend on finite rank
perturbations and in particular not on the parameter λ.

Here we have only discussed the cocycles of degree 2 because they are the most relevant in gauge theory; it is clear
that similar computations can be performed with the higher cocycles.

The 2-forms ωλ
2 are directly ‘seen’ in quantum field theory in the following way. These forms appear as curvature

forms of local vacuum line bundles for a fermion field in the gauge background [6,8]. The gauge action on gauge
connections lifts to an action of an extension of the group of gauge transformations on the local line bundles. On
the Lie algebra level, the 2-cocycle describing the Lie algebra extension (“Hamiltonian anomaly” [14]) is just the
curvature form evaluated in the gauge directions. In the case of fields in one space dimension, this extension (for a
simple compact gauge group) defines an affine Kac–Moody algebra.
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